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Twenty-five years of progress in information theory

S. Kotz!) and J. Wolfowitz?)

- 0. Introduction. Contents of thls renort.

Ve congratul&te the Uni&érsity bf‘California on its centenary
and are pleased to contribute this report in its honor. Oui title
is actually a slight misnoner, éince the work we shall,describé
beging with the 1948 paper of Shannon l&i] . |

Information theory covers a multitude of subjects (the cynic
might say sins) and we wouwld like here briefly to 1ndicate what
this report will and will not cover.: It will concern itself en-
tirely with wnat is often called probahilistic coding theory.
Algebralce coding theoxy, which éould proberly be considered a
branzh of inforination theory, will not be included because Lt is
largély outside the competence of the authors. Although glgebraic
coding theory and probabilistic coding theory are pérallel and
complementary in on2 sense, thedir épirits and methods are very
differant. There are other mathematical disciplines which are
often incorrectly Junped under Information theory, prinéipally
because they use entropy function as aitool. It would be as
ircorrect to.classify then under information theory as it would be
to call any theory integration theory simply becavase it involves
the use of the integral es & tool. Thus we shall not discuss the
problems in ergodic theory which have been solved by using entropy
s an invariant, noxr problems of packing in function spaces, nor

the entropy of stochastic processes, not the various systems of
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gxiomatizing entropy.

hppended to this paper is a bibliography wnich 1s reasonatly
complete, thouzh not exhaustive, I. is obviously inpossible for
us to discucs every one of these papers, particulerly as the
editors of this volume, of necessity, have subjectéd us to precise
space limitations. The cholce open to us was therefore elther
to write an introductory exposition of information theory or a
very technical papexr for specialists, The flist of thése choices
seemed to us not to be in keeping wlth the spifit of this volums,
and the second would result in a'paper which aculd be read only
by & small grouvn who m;ght have little need for readlng it. Ve
have therefore decided to compromlse between the two choiéeso
We shall discuss a number of bésic, typical, and important subjects,
which will enadble thc non-gpzelalist raader to get some of the

flavor and soma understanding of the theory, without at the cems

-tine. completely boring the speclallst reader. Ve can only hope

that this compromnlise will not cause us to fail on both counts.

In order to avold jinvidious comparisons and for other reasons,
we have decilded to cmit actual citation of references in the text.
There are only two exceptions to thiz. One, a very minor one, 1s
where we cite two papers with seamingly contradictory resultis,
because we wish to warn the reader thet they deal with dlfferent
versions of & problem discussed below. The other, tite major
exception, 1s to refer freesly to the name and popers of C.E. Shannon,

vhose truly brillieant werk founded the theory end preduced many of

‘its important resulis,
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1. Disciete momorvless chanaels.

Let. A" = {iy0.0,8% 2nd 3 = {1,...,0) be, respectively, the
inpat and output alphsbets. The gzlphabel that we use in everyday
life consists of 26 Latin letters, 10 nmuerical syrbols, various
punctuation marks, and a space baitween words, ﬁhich is itself a
punctnation nark. The alpnabets I ;nd 3" are essentially no
different and no iess geneval. To avold the trivial, we ussume

that both 2 and v are greater than 1.

Any sequencec of n letters, or elcments, from A* {respectively,

from B*) is called a transmitted or sent n-seqguence (respectively, a

received n-sequence). In any one discussion, n will be fixed. The

sender transmits n-sequences over & chann2l. When he sends such a
sequence, say Y, the receiver receives a'gggggg.received n-sequence;
that i35, the sequence received depends upon chance. Call the chance
recelved n-sequence v(uo). Its dlstiributlon depends on v, and the
channel. In fact, for mathamaticel purposes the channel is sitply
‘the function ’

(1.2} P{v(u,) ="v,1,

that 1s, the probability that, when the n-sequence u, is sent, the

chance received sequence should be Vos this function is defined for

any transmibted n-sequence U, and any received n-sequence Voo Whgn
necessary to avold confusion, dependence on n sﬂbpld be indicated.
Usually the function (1.1) is defined for every n.

One of the simplest and most important of all channels is the

o——

diserete memsvryless channel (dme). It is deseribed by means of a

manncl vrobability fanction (epf) w{jli), defined for every i ¢ A¥

&nd cvery j € B*. This can be any function for which always

w(ji3) > 0 end-

D
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o w(gi1) = 1, 1 e A%,

Divtierent funaetions w define dififecent dun's. Let
U, = (al,ae,...,an),
VO = (’bl,bQ, oo ,bn) .

Then

' n
Plv(u,) = v,1 = kgl ?(bkiak\.

We see that w(j]1) can be'regorded as thre probability that,
when the letter i is sent, the letter J is received. In thet case,
the individual lettérs received are independent;y distributed.

We now define the notlon of codes which is &=s basic in

information theory. A code (n,M,7\), where n is the lensith of each

wvord, N is the length of the code, and A is the maximum provability
H

- -

of error, is a system

(1.2} {(ul,Al),...,(uN,AN31,

: . .
where Uy, 0005y are transm’ :ted n-sequences, Al,...,AN are disjoint

sets of received n-sequences, and

(1.3) P{v(uy) € A1 D 1-3, 1=1,...,M

A ccée is used as follows: When the sender wishes to send
the ith message, he sends %1y. Vhen the mzssage received lies in AJ,

trhe receivar concludes that the jth message was sent, If the

7
W

zzsage recelved does not lie in any Aj, he may draw any conclusion

ne wishes about the message that has bzen sent. The probability
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that any message sent will be correctly understocd by the receiver

is &t leasé 1~
One general problem is this: Ior various chaﬁnéls of interest,
given n and A, 0 < A < 1, how big cen N be? Most of the known
results are esywmptotic in n.
The closely related problem of constructing the codes wﬁosé
existence 1s guaranteed ty the theorems that Will.be'cited below
is as yeﬁ only partially solved.

Any vector wlth nonnegative conponents that add to ). may be

called a probability distribution. A probability distribution on A*

(respectively on B¥*) will have a (respectively b) components.

The entropy of a probability distribution w,
T = (vl,...,vc),

is'defined to be

c

' Logaxrithms to the base 2 are used for nistorical reasons enly, and

~any other base would do as well. 1If TS = 0, the ith term of the

right-hend member of (1.4) ‘is defined to be 0. This last convention
always spplies. The entropy function has many important combina-
torial prcperties which are essential in the statement and proofs
of mwost coding theorems. o

Let N(n,\) be the length of the longest code (i.e., of
maximum length) of word length n and maximum probability of error

A. Obviously N(n,\) is a ﬁonotcnicaily non-decreasing function
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ol A., Yet the following.remarkadble tlheorem holds§ -

(1.5) iiﬂ ~% log,, N(n,A) = C,

vhere C is a constant, independent o A, given by"

(1.6) max [H(r') - % 7, Hw(-|1))],
T i

wvhere

(1.7) T =W,

W is the mabtrix with w(J|3) the element in the jth row and ith# |
column, and r and r' are probability distribaticns (column
vectors) on A% and B*, respectively. The namber C is called the
cepecity of the channel. One can say even more! ‘There exists
-a positive function K(A) of A such that, for eny n, there exists

a ccde such that

(1.8) N> exp, {nC - .Mm K(x)}
‘and there does nol exist a code such that
(1-9) N> exp, {nC + /A K(2) 3.

(1.8) is celled a coding theorem and (1.9) is called its

strcng converse . The weaker result, that.always

- (1.20) N(n,\) < exp, {-’zg-f_-,:)—?

is ¢ailed a weak cenverse .




.satisfieﬁ,,we shall €¢ll C the copacity of the channel.

lo'}

>

¥

A chennel other than the Gis “has aAdiffgrent fuﬁétian‘(l.l)
(nct given dy the pfoducb of the values of w(-|-)) and may have
different alphabets. Whenever, for such a chanhel, (1.5) is
Contrary
to pépular velief, not all chanme;s have a capacity. Most
"reascnadble" channels of intorest do. | |

here ave d;ffe:snt ‘ani very lrtercbttng mechodq of prcof of

(1.8) and (.9), but laﬁk ¢ space prevents our doing more than

' bafaly menticning them. One method of proving (1.8) is based on

the fart that if a code 1s chosen at r»andom- (!), by-a.reasénable
and easily specified random process, the average éfror (of
decoding) is very small.: (This préﬁes ﬁhe existence of at least
one ccde, and in a sense implies that "most" codes have:\L« mall
probability of error!) In. & second method of proving (1.8) the
code is built up seriatim and arbltrariliy until its prblﬂngation
is impossible; the code is then shoun to have the desiréd length.
(This sgain.suggests that "most" codes ére "good".) A third
method involves a method of actuzlly ccdnting sequences. Tnls

last wethcd cen alsc be used to prove the strong converse. Another

methcd of proving the strong ccnverse essentlally replaces

counting sequences'by measn?ing their volune. Finally the weak

converse is proved by a simple and 1ngenious manipulaticn of
entrcpies. Modifications and ccmbinatione of these methods are
usually aéapted to other channels. The proofs show up the
coembinatorial Significance of the varicus entropies whiecl: oceur

in the statements and procts of fthe thevrems.
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Consider now the dmc 7lth the following difference:
Suppose the sender can look over the receiver's shouider and see
vhat the latter is receiving. The sender can choose subseduént
letters to be seni in owxder to co}rect previous receptlon, but he

can communicéate with the recelver only over the channel. The

capaclty of this channel is the same as 1if there were no fee@back!

This channel could occur if an earthy expedition landed on the
moon. Naturally the pouer of the latter's transmission apparatus
could not.be great. The recelving station on eawth,ihowefer,
would have almést limitless powver and could report‘wgth essentially
perfect feedback the meséage actvally recelived.
The term ggfgggig 1s of engincering origin and really meens
finite. Channels which are not discrete have infinite input
or output alpiiabets oxr both. The infinite alphabets mdy be
countable or not. The usual nethod of itreating suéh channelé is
to approximate thelr -alphabets by finite alphabets. This is not
always possible and often difficulties are encountered. When the
alphabets are not denumzrable measure-theoretic guestions also arise.
Some refererices for this section: )
[w], 21, [27], (28], (29} , [20] , [ma) , [4s) , (9] ,
(4] , [56], (621, ler] , (o3l [8s] , s8], [ou) , [ov],
(961, [98] 5 [99], [202) , [ro7]) , [u12]), [124], [128],
(220, [232) , (), [a83), [a8n] , [160] , [.6),] 162]
[170] , [273), [172] , [avs], [a8u]. .
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2. Compound channels.,

Consider now & dmc with this difference: Instead of a single
cpl w there is given a set S" of cpf's, say gw = {w(-l -]é), 55'83 .
Here the third index, s, distinguishes the Cpf. The set s¥ mdy have
infinitely many elements. For each S, w(j]ijs) is a c¢pf &éfined
for 1 = 1,058 8nd J = L,...,b. The compound channel transmits

as follows: Euch word of n letters (h~squence) is transmitted

according to some c¢pf in Sﬁ; the cpf may vary arbitrarily in éﬁ from

one such word to another. _

Let P, now denote probability according to the eof w(- l°[ 8).
A code [a,;N, ) for the compouhd channel. is a system (L1.2) with
all the requirements, except that (L.3) is replacad by the stronger

requirement
(2.4) : P, iv(ui) € !\132.1. ~A s L=1,00.,0;5 8E S,

Thus, even 1f Maxwell's demon tried maliciously to vary the cpf
so as to make things as difficult aé possible, the provabllity that
any word =sent would be incorrectly understood by the receive:r is =< /\ .
~ .The question is, how, long can codes be and still meet ﬁhis

strongef requirement (2.1)? It must be borne in mind that the cpf's
in S@ nay be very "antithetical" to each other. The Tfact is that
theorems exactly like those for the dme hold for the compound channel.
Thus the maximum length of the code depends on é constént celled (as
in the‘case of dinc) the capacity (C_L say) of the compound channel.

If CL vere 0 in moet cases, little could be done with a com-

pound channel. Let C(s) be the capacity of the dme with the
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single cpf w(-|:|s). Define

_ a -
C, = inf C(8) = inf max (H(x'ls) - T Hiw(-|1]sY)3}.
2 papie geS [( | 41 T4 [ (‘ ‘ 1)
Then obviously we have C, S_Cg, for the demon could use the "worst"
epf for every word, gha% is, the one'with the smallest capacity.
(If S is an infinite set and there is no worst cpf, one uses a

cpf.with‘a capacity arbiprarily close to the 1nfimum.) The fact
is that | -

.

a : ‘
C, =.max inf {H(«x'|s) - = =, H[w(-|1]s)]3,
T BE€S f=1 4

and, surprisingly and pleasantly, Cl is'not O 'unless C2 is 0.
Thus Cl is not O‘nnless S*.contains a cpt whose éapaciﬁy is 0'(or
a sequence whose capacities approach 0). | |
Consider now a compound channel as above.except that the
receiver now knows which cpf is being used (but phe sender does not).
It has been shown that the capacity of this chamnel is also Cqe
| .. Thus knowledge of the cpf by the recelver alone does not increase
the capacity! ' |
Consider the compound channel as'above, except that the cpf isk“
". now known to the sender but not to the receiver. The capacity is
then 02, vhich in general is greater than le
In all of the aﬁove results S* may contain infinitely many

elements, indeed, non-denumeradbly infinitely many elements, and

the cpf 1s chosen arbitrarily'qt the beginning of transmission of

each word by the "jammer". Nevertheless, the fact that the same
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- epf (although arbltrarily chosen) ie used.for every letter 6f the

word has essentially the effect that, to a satisfactory’approximation,

e
the set S~ can be replaced by a finite set or at least one with

(o8

n .
2 */5 cpfts, where ot is suitably chosen., This is alweys an essen-

tial step of the proof. Suppose now that the cpf varies arbitrarily
from letter to letter of a word. The above reductlon is now hB'ﬁ&ngn
er possible, previously used methods no Jlonger apply, and the problen
becomes very difficult. Partlal resulté have been proved in [8&3
and a complete solution announced'without proof in [3&] . Since a
theorem announced in [34] is incompatible wiéh a result proved in
[84] it 55 clear that the channels trsated are not the same.” While
awvaiting publication of the results ennounced in [3&} and [35} one
can repeat, withéut fear of contradiction, that the pboﬁlems in-
vovled in these "arbitrarily varying channels" are very difficult.

Suppoese that the cpf'varies arbitrarily from letter to . letter,
but with some limitations. For examplq éuppose that the number of
changes ITréom one cpf to another is not greater than a fixed nmultiple
of N, ol L. In the latter case Lt is easy to prove that the |
problen can be reduced (and hence solved) to the (compolnd) case
where the same cpf governs the transmission of each letter,

We spoke of the above proglems ag 37 neither the sender nor
the receiver knew the cpf. Of course the problem of afbitrarily
varylng channels has been studied where either oxr both know the cpfl
for each letter., In fact, the capaciity of the channel where both
xnow the arblirarily varying cpf 1s tha smallest'of the cpf's in

the set s°.

#Randomlzed codes are used in 34] but are not admitted in [84] .
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Perhaps this is the time briefly to mention the question of
randomization. Conceivably the sendcr could use randomized '
encoding, i.e., each sender's message could be represented by a
probability distribution over seéuences in the input élphabet.
After the sender has decided on the message he performs a chahcé
experiment with the éorrcsponding probability distribution and
actually sends the resulting sequence. Randbmized decoding'is.
defir. 4 similarly in an obvious way. Randomized codes have bteen
studied to some extent, and further studies are in process.

Generally speaking, randomized decoding seems to pfovide little

. advantage, but under certain conditlons randomized encoding

actually helps by either making a longer code possible or by _
reducing the error. Indeed, the author of (34] states that his
general reéults are valid only under randomize§ encoding. These
results are for arbitrary varying chennels, and an explanation of
the need for randomized ehcoding may perhaps be thé following.
Suppose that there is a rational malevolent being, the " jammer"
say, who chooses the arbitrarily varying cpf's so as to make
communication between sender and receilver as difficult as possible.
The utility of randomiied_encoding seems to be to protect the
sender against the'Jammer. Even when the jammer knows the message
to be sent, if he doesn't know the actual sequence which will
represent it he may not be able'to choose the sequencé of cpf's
which will most efficiently jam it. No such utility accrues to.
randomized decbding, and the sender can do best by voting for the

message with the highest probability. (This is not strictly

~correct in the present moael. The messages to be sent are chosen
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urbitrarily and onc cannot speak of the a posterlori prsbabiiity

of ¢ message afier the resvlting chance sequence has been received.
However, intultively this is near enough, and it will be made pre~i
cise in the nexi paragrapn but one,) This discussion also points
up the dirfference between two channels, céach with arbitraxrily vary-
ing cpf's (from letter to letter). In one channel the Jammer knows
the actual sequence being sent before it is sent, in the other he
knows only the probabllity distributicn over 1nput'sequences°

Naturally the capeacity of the second channel is not less than th

®

capacity of the first channel. The information theory literature
is sometimes not entirely nathemaiically precise and such dis-
tinctions are often iade only implicitly. It is l{kely that [34]
treats the cacond channel; [en] certainly trsats the first.

The prec2:.ding remarks suggest that some problawms in information
theory should be viewed as zero~sun two-person games between‘the
sender (and recelver) and the Jammesr. Indéedg the fora of the
capacities in the several forms of the compound (stationary)
channel, i.e. max inf and inf max of the "information function" in
the above deiinitlons of C, and 02, surnest & game-tasoretic back-
ground to the problem. A number of wriiters have made more or less -
positive assertibns about this, but no specific proof of any coding
theoren or any other importent iact by game-thzovetic nathods is
avellable in the literature. If there is an essentlial, non-trivial,
and reaninzful connection behween the tiwo thoories 1t would ba very
interesting and uvseful to egteblish it drecisely; It mignt well
lead to further results in coding theory. In several papers cor-

related encoding and decoding has bean used. Hr& the sender, dbefore

transmitting any
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message, chooses a code at random, c?mmunicates the result of his
random experiment to the receiver, apd theﬁ sends the message |
according to the code selected. "Thils procedure is repeated at
each m2ssage. It seems to the writers that this procedure cannot
seriously be considéred as reflécting anything remotely reéembling
actual communication. Surely.ib is vastly more complicated for the
sender to transmit to the recelver the designation of the code
which is the outcome of the chance experiment than it is to transmit the
message itself. Yet a new code must be transmitted with each |
message! No doubpiﬁ?ggKst involving correlated encoding and deccding
have mathematical 1nberest.' |
| In most papers in information theory,'especially»those vritten
by engineers, it is assumed that the message to bc sent is itself
’ chosen at random (usually with equal probability for each message).
When this is so one can speak of the a posteriéri probability.of
a message, after it has been passed through the channel and the
chance sequence received. Naturally the avefage error 1s then
minimized if the decoder decides that the message sent is the one
with the largest a posteriofi probability; this is called maximum
likelihood decoding. Maximum likelihood decoding is simple and
unambiguous oniy if there is only one cpf for the channel. 'if
there is more than one cpf then different messages can have
maximum a posteriori probability according.to different c¢pf's and
often a difficult theory is needed for a decision. ‘Héturning to
the first and basic case stﬁdied, that of a édmc with a single cpf,
the fact is that the two caces, that of averag~ error with the

L]
message chosen by a(known or unknown) random mechanism, and that
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of maximum erxyor with messares chosen urﬁitrarily, are essentially
the same, This is also true of many other channels. This fact
contradicts the statement, made by some very great ﬁathematicians‘
and wldely believed in zngineexring circles, that no theory 1s
possible without knowlng the statlstiics of the (ran&omly chosen)
message. For example, the theory develédped in Chapters 3 and L
of [!5] neither assumes the exlstence of a random mechanism for
choosing messages nor mokes any use of 1t.

A nuver of writeyrs have stated, mostly without proof, that
there Jls a basic and meaningful connaction betwean information
theory and the theory of statistical inference, and sone éf then
have attompted formally to set up a theory wnich would exhidlt thise
putative connection. 7Tt seems to us that 1o establish a beasic
and meaningiul couveutﬂon beteen two thzoiles requlres elther
that one obtaln & common framework from which one can oorﬁva
~sone of the basic theorems in hoth theories, or that one dexrivz
important old or new theorems in one theory by use of theorems
ox methods of the other. By this esséntial standard no, meaningful
connection betiveen information thoory and the theory of statistical
inference has yet been established, OF course this does not prove
that no such conneetion exists.

Sonie references Tor this section:

(3], (47, [J.l] [16], [a7), (18], [19],[207, (23], [=8],

(29) , [34) ,(35) » [37] » (w7] ,[69), [70}, [73}, [76] .,

[80], [81] . [82) , [82) , [oel, [95], [102], [2on) , [105],

[123), [ws) , (s8], [os6), [wsmd , [am), Loel, (v ),
{178, [180] , [182 , [189), [L, '], [Lg, [198 ].

~ \ . §
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- 3. Exror bounds. Sequentlal decoding.

‘Suppose gilven a dme with capzeity €. Let 0< R <C and con-
sider all codes of word length n and code length 2R gy tﬁis_
channel. (In such a case o6ne is said to be transmitting ar "rate"
R.) Xt is not difficult to show that there exists two positive
nunbers, say Dy and DE’ sucn that, among thase codes, there exist
one for which N , the maximum ervor of decoding any word, satisfies
A< DL exp { —nD23 35 this is swmarized by saying that the error
decays expdnentiélly (with n)., It is true for most channels, not
only the dmc, and probably all channels of practlcal importance,
that tha error decays exponentlally with n. The proof of this 1s
usually quite simple and requires only an almost trivial modifi- -
cation of the proofl of the coding theorem. An inuumu;ve explanation
is perhaps this: The codes we are considering are of sucn snall

R
length (approximately 2"n(c R) of the length they covld have for

~a fixead AV that theve are great gaps amony tihe different ui‘

and they can be dustln%u ished (decoded) by the decoder with very

great eccuracy., . Exponential decay of error 1s essentially due to

88
-1 n

the fact that the probabllity that the mean n = 5 ki of independent,
1

identically distributed chance vh:¢au s X, , X ,...;X )? shall

L ta
exceed any fixed nuwmber larger than than their common expected
vélue, decreases ekponentially uith n.

The school. of electrical englineers working in information
theory, vihose intellectuwal centex is the Massachusetts Institute

of Technology, regords the determination of the best (i.e., lavgest

. possible) D? as one oi the principal and most important problams

of infomrmatior theory. Determinations of bounds on Dl is
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Qonsidered of negligible importance. The reason given for the
importance of the problem 1s that the complexlity of the apparatus

for coding and decoding goes up, roughly speaking, exponentially

with n, so that it is important to know the smallest n for which

one can achieve a deslred rate R and a desired (usvally small)

upper bound on the error. Even for the dme the problem 1s of form-
idable difficulty. Previous attempts consisted of using randomizeé
coding theorem to get & lower bound on D2 and-sphere pack¢hg methods%
to get an upper bound. It was thought that thése two bounds agreed

over a certain range of R, so that D, was determined for this

2
range, ﬁhf errors were found in the arguments., A recent new effort
has succeeded in determinlng Dy for part of the range of R. The
argunent L5 difficndt and does not Seen to lend itself to intuitive
description ox summory. At least that paxt of 1t walch gi&és a lover
hound on D2 can be carried over with litile change to many other
channels. The value of D2 for 2)l R is as yet unknown, althougn
approximations ave avallable.

We now tuirn to another sudJect of major investlgatlon among
engineers, secqguzniial decoding. Thls is ong of the most‘beautiful
of all ideas 40 cedimy th=ory and one of the most lmportant fox
practical application. Unfortunately for the mqthamatician,'it
does not seem to lend itsel? to elegent mathematical theorens.
Even an approximate éescription of thz method would reguire essen-
tlally the reproduction of at least & short papzr on the

subject or the reproduction of tne appropriate

. :
for a description of thess netrods see, e.g,'[M] p. 227
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chap:tcr of a book. This is impossible for us, but 'perhaps" |
the ﬁfollowing lines will help to form éome idea. B

The actual applicatlion of the codes hitherto discussed
would always occur in connection with a computer. The code
would be stored in the computer and the latter would be
indispansable in both encoding énd decoding; the laﬁte’r ‘proce‘ss '
requires many more'computatibns than the first. | The volume of
material to be stored and the number of operations Vté be
performed increase exponentially with n and soon e)%éeed “the
capacity of even very large modern computers. This rais_és the
problem of finding methods which can be carried oﬁfq practically.’\
Sequential decoding is intended to be such a method. |

\».;e pause for a moment for an intuitive diséussioh of what
pakes efficient coding. If the transmission of any ons letter
Is repeated a sufflcient number of times then, except in certair;
cbvious special cases, the decoder (receiver) can identif& the
ictter being sent with a probability as cloée to one es des‘ired.‘»: ,
In this way any desired message could bé transmlitted with“a(nir
desired degree of accuracy.” The trouble with this riaive method
{c that it is grossly inefficlent; in terms of our prévious
prrameters, for given A and R an enorméus n is generally required.
¥tat wakes for efficient decoding are the differenceébefween '
ertire words rather than between individuel letters; the letters
°f 3 word reinforce each other, so to speak, so that even if-
‘ivaral letters are misunderstood the entire pattern atill
reining cleé.r'. .This 1s ealled 'redundancy, as distinct from sinple

f*patition.. For a homely example, consiger the problen of reading
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every letter of a manuScript written in poor handwriting. If

the reader is familiar with the subject or even the language

he can often reconstruct illegible letters or words from the
context. This is impoésible if what iz writien 1s made up of
nonsense syllables or material in a completely unknown language.
(Although in the latter case one can start looking for patterns
(i.e., redundant elements) as cryﬁtb»aﬁalysts do.) The idea of
sequential decoding is to introduce redundanéy into the decoding
of individual letters, while avoiding the construction of codes
vhich requ;re the storage of, and calculation with, exponentlally
many sequences. We should emphasize, however, that there is

not Just one nethod of sequenfial decoding, but a number of
variations. ﬁelshall describe a typical, but by no means unique,
nethod., _ '

In the basic and simplest description of sequential decoding
it is assumed that the channel is binary symmetric and that one
has the problem of reproducing a stream (doubly-infinite sequence)
of chance "information" digits which take the values O and 1 with
equal probability, all independently of each other., (A binary
symmetric channel reproduces each of the two dlgits correctly
with probability 1l-p, say, and reverses the digits with probability
p.) Suppose that the digits actually realized are ..., m_p,Mm,,
Myseos o Iet n and k be inuegcrs, and suppose that the rate
R = i, and that mk is the "constraint length”". Each information
digit uill be coded into m digits which are then transmitbed over

the channel. Each of these m digits is a linear combination of
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the information diglt being seﬁt, say'mo,.and its (k-1)

immediate predecessors, m-l’;"’m-(k~l)' Hence the "effect"

of any informatlon digit extends over mk digits, transmitted

and received, and one does not decode this information digit

until mk digits have been recelved; this delay is a price paild

for using the method. The decoder is now supposed to know the
preceding (k-1) information digits. (He hds decoded them
correctly wlth very high probability.) He begins a Search

which will end in decoding the current information digit. This
search is Impossible to describe under our present limitatlons.

It is based on the fact that, with very high probability |
(depending hpon mk) the "distance" (this depends on the particular
sequential decoding procedure) between the received sequence of

nk digits and a trancmitted sequence of mk digits which corresponds

to any information sequence m_, mi,...,mé_l, where ﬁ5 is the diglt

(o)
different from mys is large. By good sequential decoding
procedures one can relatively quickly eliminate as possiblitiles

[+ ¥ .
all sequences which start with ﬁb, withnsmall probabllity of

error. Here "relatively quickly" refers to the average number
of required searches and computations as compared to the
probability of error. The above description is very vewy crude
and'incomplete, as any description of thls brevity nust be, gnd
at best can only give an Inkling of the flavor of this beautiful
idea.

The published results in the 1iteratufe of sequential

decodinﬁ conslst of descriptions'of different schemes, and the
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theorems_are statements about the expe cteu nuabar of compuidtlons
needed by the scheme under ceyteln condicions and the probability
of error in decoding. These results are often clever and ingenlious
and conslderable difficuliies have to be surmounted in obtaining
them. Unfortunately for the mathematiclans, the theorems are al-
most never elegant, as are the theorems in the Shannon theory.
There avre no clear cut proofs that a cextain procedurg 1s optimal,
Perhaps these will stll) come, |

Ve close this section with & brief description of a totally
different ana also vexy clever idsa . Conslder a channel with
feedback where -nnepcnubnt, ldentlceally distributed Geaussian errors
are added to each transivitied signal, and % times the sum of the
cquares of the n signals which vepresent e word is bounded above
by & glven constant (the "average pouer"). Accoxding te this
5uca the meszs 1Qe is coded in en arbitrazy but Tixed manazxy into

one of a szt of equally spaced points of an interval, and ©his

b
point (number) is traasmitted; this is the fivst ol the seguance

of n signals uhich will be used to transuit the nessag

1th transmitted signuld, 1 = 2,...,0; is & zuitably cho

n
(l“-
—
e
3
O
£
P

Tunction of the message end 2ll previously received siznals. The
decoding of the nessage aiter the nth received signal is also

very simple: one decodes the mascags sent as the one corresponding
to that onc of the egually spacad polnts which is neesrest to the

th

n received sisnal. It hes baen proved that this meinod is

optimal in & very petuval and resonabdls sens

. . 2 5 o
@, ang 1Lt ie clemr
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Trom the déscmiption that 1t involves a minimum of encoding
and decodlng compubations. Unfortunately, it possesses oneAvery
serious dravback, If n is sufTiciently large the probability
1s vexry close to one that at least one of the signales will TfQULTG
Tor lis transmission an amount of power (l.ee, thé squa_v of the
signal) which exceeds any fixed bound (and hegce th;’“capacity"
of the instiruvaant).
Some references Yor this scction:
81 [e), Tas], [ur), (32, [33 , [us), [wl, [u6],
(59 ., [s3) ., (=), [58) ., [68 , (7] . [v9) , (sl ,
[es) , [o3] . [96], Vov), [u2) , [226], [a27] , [a3s) , [23¢
- [37) [mf\ ., Do), Q] . [us0] , (;5] , [1s8] ,
[159j (1630, (183), [.e8], [a87), [190), [ig2),
[ w97] . [wo] [200] , [=201), [e02], [203] .



h, Codine with ¢ fidelity criterion. - Work of tha Russian

e
school,

. as i $

shannon [ 1487 and other writers have studied the following
problen: An {(infinilte) sequence of informatlon digite, l.e.,
values teken by & seguence »Ff chance variables with a known
distribution (the chance vaqublnv ar svally independently
and ldentically distributed, but thls 1s not essential) are
peroduced by a sourca., Alter the source has produced n digits
the latter are coded into a seguence off n' digits; this sequence
la transmitted over a nolsy channesl, and the recelived n' - seqguance
is cdecoded into a seguence of o dnfomaation digits. (The actual
fomaulation is slightly rewe general). .

here ie a"fidelity ccitorion® wivich mecsuece the 'distortion’
betraen the ssovence of n digits thus detodad and the saquence
of n digits profucaed by the source. Thae resulis obitainad in

. o) ., LN 0 oy g . - oo % ll'
the theory deal withh sueh quastlons as the winirem ratlo -=

n
necded so that tha distortion not exceed & glven wound, znd the
geometric problen of tiz minlirts nwapar of n-gaguznces of in-
foraution diglts ncaded to 'span! the epace of suceh seqguences of

infomation dizlte to wlthin a epzeiflad bound on the distortion.

Ve s83hall not dascyibs thses resulis. Instead, we shall descrilibe

2
the ganzralizetion of the avove ned:l whose siudy has been &
wajor ocaupation of the Russian scnool of fafowxratlon thoorints,
and shall aesceelbs o Lyplcel and dnporivant rasull of the Rusaian

cehool about this nodsl,
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Lot (B ' )y, (85, 7Lt)..,. be & sequchce of chance
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sy et o, N 5 3 > » t‘ - . 0 .
variubles, the nady ( gt s %2,7) b2ing defined on the probability
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calls &% he dnPolwation C¢ansiiy., ke soavence (50, Q;) ie
called inforaction otable iF, Tor all t sulfleisntly larsgs,
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in X aX, sveh that tha marginad distridutions of Y ave all tha
sam2.  Thiec set is colled the message .{H}, and p, is
. : : >

called the distributlion of the input mesrage, Any pailr (g ;;‘3
of chance variables vhose Joint distribubion belongs to W i

said to savisfy the condltions of reproduction W. Without loss
of much gencrality one limits one's self to W defined as follows:
Suppose glven real functions_pi(x,ﬁs, i= ﬁ,,.., M, defined

on X=% and maasurable with respect to the 6ﬁalgebra %(Sdsﬁg

and an M-Gimensiono) set W, W consists of all distributions

Ve (wvith the same marginel distribution of¥ ) Yor which the

b g

'S
L.

vector whnse L7 cowponent, & = L,v.esM, ig

o
.

,(y AR

@
o

balorgs to . Phe messeoe entropy with accuvacy of reproductlon
WE is dofined o be

-

< e “ e . P/
E (W) = .'.‘l;:f I { gs € )e

.b s .
The seguence oi MRSIAKLS {V!}'is celled infowmuation, stable if

‘ t ~t
theore exists an information stable sequence of palrs ;( E,E7)
suclh that the ¢ pair satisfies the conditien of reproductlon

t
W oend



“S" ose given raal fune

. sy Y L, Ko . o AR ] ‘
‘Tha J&ODlCm or obtaining genuial suwiiiecient comditions For the

information stability of a uqu“HCL o mes 8ag 1s bound up
with the probdlew of obtaining sul I'C'Qnu1y gensral. uonGLtionb
Yor the information atubllity of & seguznce of paire of chance
variables,
'Q.'
Let (Y, Sy) and (Y, Sio be two maasitz spaces waich sérve
as tne space of innui signels and space of output sgignals,

. "' »' ~ o . . '
respectively. Let € (¥, A), ye Y, A ¢ $§J be & tran sition
fenction such that a) for #ixed y, € (v, .) is a probability

. -~ . . o o ' ~ K )
measuxe on S?’ v) foxr fixed A ¢ Sg ¢( ., 'A) is measurable

.th vespact to the glalgedbra S, Let V be a given gzt of
o
'

, 3,
probability distributions on (¥ X ¥, SY pid S§% The srsten
consisting of ¥, ¥, ©, and V is calied "ihe tronsmittsr” and

uill be denoted for brevity by {0 v'} The chance vaxiadlés
Gb,ﬁ:with valuss in Y and Y, vespretively, are “connccled by

the tranzaitior {Q, V} "Af thelxr Jolnt disteibution belong: to

. f" o . . .
Vané for cny A ¢ 6§/uhe conditional prooabllicy

with probability one. -Again, withovt loss of much generality,

intts onc'a sels to sets V dafined as folliowms:

S “ s

Chons 75 (¥,5), & o= lieee,l; defined on

,A/ .
» Y, and an F-dluwensionsl sab V., The set ¥V of distzibutions

X
neix (9,9)
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veetor whone i h coaponent, L =l, ..., N, 18

o~
E ﬂi(ﬂ/,m)ﬁ

s in V. tWhen the 7:’.1 depend only on y the constraint jmposed
by V is on the input signal only. ‘he qapacity of the trans-

mitter_{q,v} 5 defined to be

m/:‘
¢ (Q,V) = S;}A_p I (1,4,

The saquance of transmitters {Qt, Vt'} is 8aid to be information
stadle i thewe existe an irnformation niehle sequence of pairs
‘ (3 ') ! i t L} t ?.
of chunce variubles (,;,L"', %) such that the +*® pair %& connected

by tne tm transmitter and such that

.tk )
inm I( 'rz,:’.’z'-) = )

c(q®, vt)

All published results concern themselves only with information
stable saguences of transmliters,
The mpessase { W},is salid 10 be transmBsiblisby means of the
transuitter ,{@,V} it there exists & sequence of four chance
o~ . - | X
variables ( 7,5, N, , % ) such that: a) this sequance is
> 0] 5—' .q;" . 4 ) . L] ) o
a Harkov chain b) the pair (% %) satisfles the conditlions of
'\'I 9,
reproduction ¥ ¢) the pair (%’ 3) is connected by the trans.

mitter { Q,VJ) . The intuitive meaning of tna abova is as follows:
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Tho input mescage L8 the. chanees varisble T with given
(-]

distyibution Py o The ﬁ nput message € is coded into the input

slgnal 4,, which is seni ovex the transnitier (channel) and

l s

recelved aszz . mnen'Q,"u decoded into the output massage & .
Tie transmitter is given and W represents the desirved accuracy
ol reproductlon. Tha condition prodbabi 1Lu" of 27, gtved ¥ >
s thewndonized encoding procadure The conditional dlstribution

of 7), given &), (i.c., @ (43, .)) is the distridbution of tihe
L R e’ . P4
received Signal. The conditlional probability of ¥ , givend4y, s
35 therardomized decoding proceduxe.
U It is easy Lo prove that & necesasry corndition that the
NasBEae {W% be tmansaissible by means the trans mitter,{@ t}
-

is that .

H (4) ¢ C (9,V).

A bxincipal concern of tbe writvers of the Russiuq school is to
prove that, asymniotically and under additicnal reasonabdle
cogularity conditvions, this condition is also sufficient, Ve

clL now deseribhe 8 tywical and inportant xesult. Let ’Ui}

. ' t Lt
be a given ssquence of messages and {Q s v ; a given seguence
. of transmitters., Wa daflne tne dimnar r (a,b) between two

points of tha same Bueclidean space az the maximim absolute

rutls
deviction hetwesn cowrssponding couvonsnts of & and b, If U

s . . Y . ) :, ) -
| is a sel in a fuclldecn sones len [b;rdedote thaz set of all
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points within an r-distunce of "ut mogt ¢ from some point of U,
We now replacc W by L'I;:" ]‘c s &nd call the covresponding message
{ws}". Ve also replace V by vl, and call the corresponding
transmnitter \‘Q,VG}I . We say that the nessage {w) is transmissible
by means of the transmitter { Q,V} vithin an -event of probability e,
if there ex:lét four chance variables ¢, N s ;;J R ¥ and a fifth‘

~ o . ~
chance varlable ‘', defined on the same space as £, such that

L

~ . . .
a) ( °34), 50,5 % ) form @ Markov ciain b)) ( § B!) sapisly

il

the conditions of reproduction W 'c)thc—: palr (9 /.;7') 58

e~/
connected by the transmittexr {(‘ V} d)the probability thet E o2 €
is not greater tha ¢ * Wow et {W} be a glven sequence ol
nessages and {Q ,Vj a given secuencn of transmitters, such that

a)lim H (wt Yo e b)Lin H (U .)._-.u- <l
C (Q » V )
¢) the number Mt o’ functions yi in the definition of the )

message and the nuwaber N° of functions .T(;i in-the definition of

the transmitter axe such that, for every a> 0,

M =0 (exp2 .{‘ a I;‘("!t)}')

and

N = o (exp, '(la c(et, vt)‘} )

d) the scguonce of transm:\.tters {Qt, vt s information stable

[ ——

e) for soma {(f’: s 47 )}, a sequcnce of pairs with respect to

Y b s, t .
unlen the seguencs { } is indoxmation stable, for some
¥ >0 and Tor every a >0, L,
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l{:’ I.’OQ"I‘
= " j ’ \t t
o(t,xp2 LH‘C (¢”, Vv )} ) S
T) the sequence ﬁﬂ?} is informatlon stable, and g) fo“,édmg*”.i"

)
sequence ( ,t, € ) of infoxmation stable sequences of. chance

variebles with respect to which {WE} is ini ormation staole

" s . - » oy
and which also soilisfy tnz conditions of reproduciion {W.},: A
for somz b >0 ond every a >0, : ce Ty
* .L ref t‘ re ‘l+b‘}
A & ) T -
* . { f J k( b -|) ?l, ( ) 4 !
Y

k’-‘-l, vou ,l‘i
= o(exL '" {} )

Then, fox every $5* o there exists a number T suen that for toT (
the nencegez {Wt% is orensmiscidle dy LL: tranrmitter.{Q#, VE”
"itbin an event of probability ¢." Undex add-b;onal conal lons
one can elimlnate the phrasge in quotation marks. One spch set

of conditions is that

(8]

v A L
aeh of the sequencas.{m“} ,.{N?} , and

sup sup | f:z (%) . et

v

ref o
I— . we .
s ah

snould b bHoundad,

o R KT ol WA

it onlonis

g AR AR g A
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Somez references to thls section:

[287, [297, [30], (3] . [35]., [38], [57], [61], (627,
(611, (807, [02], [w08] , (112) , (126), [ar], (18],
(129) , [120] , [122], [1_,1_[ »[132], (w2, [152] , [181] ,
[196) ,

and also I and;Jb
NS
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